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Scattering From a Sphere of Small Radius
Embedded Into a Dielectric One

John A. Roumeliotis, Nikolaos B. Kakogiannos, and John D. Kanellopoulos

Abstract—In this paper, the scattering of a plane electromag-
netic wave from a metallic or dielectric sphere of electrically
small radius, embedded into a dielectric one, is considered. The
classical method of separation of variables is used, combined
with translational addition theorems for spherical vector wave
functions. Analytical expressions are obtained for the scattered
field and the various scattering cross-sections, in the case of an
inner sphere with electrically small radius. Numerical results
are given for various values of the parameters and for metallic
and dielectric inner sphere. Some remarks are made about the
possibility of detection or identification of inhomogeneities or
nonsymmetries.

I. INTRODUCTION

CATTERING from composite bodies can give informa-

tion for their internal composition. Thus, by observing
their scattered field one can detect inner inhomogeneities,
nonsymmetries, etc. The shape of the boundaries of such
bodies severely limits the possibility for analytical solution
of the scattering problem. Various numerical techniques are
usually used for complicated geometries, a few examples of
which appear in the recent papers [1]-[6]. Also, perturbational
methods can be used, like those appearing in [7}-[9], for
example.

In the present paper, the scattering of a plane electromag-
netic wave by a metallic or dielectric sphere of electrically
small (much smaller than the wavelength) radius, embedded
into a dielectric one, is considered (see Fig. 1). A special
analytical perturbation method is used in order to obtain ap-
proximate (first order) analytical expressions for the scattered
field and the various scattering cross-sections. This method
was initially developed for the scalar problem of scattering
from an infinite cylinder of small radius embedded into a
dielectric one [10]. The present vector problem appears much
more complex and very lengthy in algebraic manipulation
than the previous scalar one. The method of separation of
variables is used, together with translational addition theorems
for spherical vector wave functions.

The scattering of a plane electromagnetic wave by two
arbitrary spheres outside of each other was solved elsewhere
[11], [12].

The case of a metallic inner sphere with small (electrically)
radius is examined in Section II, while that of a small
dielectric inner sphere is examined in Section III. All metallic
or dielectric materials are lossless. Finally, in Section IV,
numerical results for various scattering cross-sections are
given for various values of the parameters. Also, some remarks
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are made about the possibility of detection or identification of
inhomogeneities or nonsymmetries.

II. METALLIC SPHERE OF SMALL RADIUS
EMBEDDED INTO A DIELECTRIC ONE

In this section, we examine the scattering of a plane elec-
tromagnetic wave from a perfectly conducting metallic sphere
of small radius, coated eccentrically by a dielectric one. The
geometry of the problem is shown in Fig. 1. The outer and
inner sphere radii are Ry and Ra, respectively, while d is the
distance between their centers O; and Os, which are origins
of two cartesian coordinate systems with parallel axes. The
origin Oy lies at the general position (d, 6o, o) of the system
O1z1y171. The dielectric constant, the magnetic permeability,
and the wavenumber are €1, i1, k1 and eg, p2, and ks in
regions 1 and 2, respectively. The materials of both regions are
lossless. Region 3 in the present case is perfectly conducling.

Let E™e be the electric field intensity of an incident
plane electromagnetic wave travelling in the -2z direction that
impinges on the scatterer of Fig. 1. This intensity has the
expression [13], [14]:
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where B, = E,,% + Eoyy(|Eo| = 1) defines the direction of
polarization of the wave and TONION (m = £1) are the
complex spherical eigenvectors that can be found in [14], [15].
These eigenvectors are expressed with respect to the origin O .

The magnetic field intensity of the incident wave is
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The time factor exp (—iwt) is omitted everywhere.
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Fig. 1. Geometry of the scatterer.

Let E5(0), Hy(O) be the field intensities in region 2, for the
unperturbed (homogeneous) dielectric sphere of radius R4, i.e.
in the absence of the inner perfectly conducting sphere. These
intensities have the expressions
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The intensities of the scattered field in this case, i.e. in the
absence of the inner perfectly conducting sphere, are
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The spherical eigenvectors mg%,ngnzl are given by the

same formulas as mﬁ%, n£n21 with the only difference that the
spherical Bessel functions of the first kind j,(z), j¢(z) =
d[zjn(z)]/dz are replaced now by the spherical Hankel func-
tions of the first kind hy,(z), he(z) = dlxhn(z)]/dz, respec-
tively. The superscript (1) is omitted from the Hankel function
for simplicity.

The expressions of Sy, (O), Tn(0), Fnn(0), Gmn(0),
which are found by the satisfaction of the boundary conditions
at r; = Ry, are given in Appendix A.

It is apparent that the presence of the inner conducting
sphere, with small radius, slightly perturbs the above solutions.
To determine the modified solutions Ez,ﬁz,ﬁsc,ﬁ ¢ we
assume that the standing wave EZ(O), I 2(0) is incident upon
the inner conducting sphere and is scattered by it. Because of
the smallness of its radius, the latter scattered field is very
weak compared to Eg(O) H,(0), so it will slightly perturb
the expansion coefficients in (3)-(6). The validity of the
above assumption and its limits are examined in Section IV.
The modified solutions Ez, H 2, E“, H*¢ have the following
expressions:
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In order to satisfy the boundary conditions at r;1 = Ry and

re = Ry, we re-expand (7) and (8) in terms of the spherical
eigenvectors around the origins O and Os, respectively, using
the well-known translational addition theorems [16], [17]:
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where P! are the associated Legendre functions.

The expansion coefficients C};* and D" appearing in
(12) are given by (13) and (14), respectively, with 8;,, ¢,
in place of 8o, po where d, 6}, ¢, are the coordinates
of O; with respect to Oz. In (13) and (14), the summation
index p varies from |n — s| to n + s by steps of 2. From
an and (12), one can also easily find the addition theorems
for S (kz']“]_, 61, cpl) nmn(kzrg, b2, o), respectively, by
simply interchanging 7, and ii,, inside the summations. For
the calculation of the symbols a(m, n| — u, slp), a(n, s, p)
etc., see Appendix B.

It can be easily seen from Fig. 1 that in any case 8o + 6, =
7 and o — ¢, = £7. So, by using the relations cos 0, =

—cosfo. expi(m — p)gp) = (~1)™Hexplilm — wpol
Pr(—z) = (—=1)"**™P™(z), and the fact that the summation
index p in (13), (14) varies by steps of 2, one can easily prove
the following very simple general relations connecting C and
D with A and B, respectively:

C;Tén — (_1)n+sAZ?9n, Dzzsn — (—1)n+s+lB;Tsn

(15)

The unknown expansion coefficients appearing in (7)—(10)
are found by the satisfaction of the boundary conditions at
= th

71 X (E_:"w + ESC) = fl X EQ,

Py x (H™ + H*®) = # x H, (16)

as well as at o = Ry

fo X By =0 (17)

Satisfying (17) by the use of (11) (and the analogous for
ﬁ%%(kng, 1, p1)) into (7) and using next the orthogonal
properties of the spherical vector functions ﬁ,@ [14] ap-
pearing in the expressions of Wimn, mn, We conclude after
straightforward but lengthy calculations to the results (|m| <
n,n 2 1)

Py = Ln Z > [AaSu+ BTl (18)
I=1lu=-1,1
—Ldz > (B Su+ A% Ta]  (19)
I=lu=-1,1
where
Lo = —jn(p2)/halp2), Lo = —ji(p2)/ b (p2),
p2 = kaRy (20)

Satisfaction of the boundary conditions (16), by using (12)
(and the analogous for ﬁgn%(kzrg, B2, @o)) into (7) and (8)
(the restriction r; > d is always valid at r; = Ry), and by
following analogous steps to those leading in (18), (19), lead
us now, after lengthy calculations, to the following sets of
equations (m = —1, I,n 2 1):
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2n +1
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By eliminating the scattering coefficients F,,, and G,,,
from (21)—(24) and by using (18) and (19), two infinite sets
of linear nonhomogeneous equations are obtained for the
expansion coefficients S, and T),,:

oo oo 3
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“Swo + [LlC:ﬁLlnBZflv + L;iDZzln glv]va}

= Smn(o)v (m=-1,1n21) (26)
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= Tnn(0), (m=-1,1,n21) (27)
In (26) and (27), we have made the substitutions
_ wahn(p1)hi(p3) — p2hg(p1)ha(ps)
I, = 2 y : (28)
p1ba(p1)in(ps) — p2hi(p1)in(ps)
I €1hn(p1)h (p3) — eah(p1)hn(p3) (29)

" aha(p1)id(ps) — e2hd(p1)dn(p3)

For general values of po, the infinite sets of (26) and (27)
can be solved numerically by truncating the summations in
order to obtain a matrix equation. However, if po is small, an
analytical procedure can be developed. As ps — O, we use
the following limiting values [18]:

1%
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. n+1)py
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1.35...(2n—1)
Pyt ’
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oyt ’

hn(/)Z) — =1

hit(ps) — i (n21). (30)

Next, using (30) into (26) and (27), we retain only the
dominant (first-order) terms with respect to ps. Keeping in
mind that in this case the expansion coefficients S,.,., Tmn,

F.n and G, can be approximated by the formula

Vin = Vinn(0) + 0V €29

where V stands for anyone of S, T, F, G and 6V,,,, is a small
perturbation of V,,,(O), we substitute in (26) and (27), and
we finally conclude at the refations (m = —1, 1, n 2 1):
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In (32) and (33), we have used the limiting values ((20), (30))

7 2t n
=——p3 L? = gpga Ln, Ld O(pé +1)7

7

(n22) (4
and we have omitted the higher-order products L;65,.,
L8688y Li6Tyy, LEST,,. Tt is evident from (26), (27), (34)
that the dominant terms are these with [ = 1. The omitted
terms with [ > 2 are of order p3 or higher.

By returning next in (21)-(24) and by eliminating the
coefficients P,;, Q,,; with the use of (18) and (19), we obtain
the expressions for the scattered field coefficients F,,, and
Gnn - More analytically, from (21) or (23) (from (22) or (24))
by using (31), (26) and (A1), (A3) from the Appendix A
((31), (27) and (A2), (A4) from the Appendix A), we finally
conclude—after some manipulation—the following relations
for 6 Fpyn(6Gimn):

[dalos)  halpy)
Ol = [hnm) Inhn(m]‘”m"’
ke (p3)

.d
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Using next the asymptotic expansion for h,,(k171) [13] in
(9) we take the scattered far field expression
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in terms of the scattering amplitude
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’ [anémn(glv (Pl) + iGmngmn(017 901)]

= fo(61, 01)0 + f,(01, ¢1)6. 37
Setting now
Bun(61, ¢1) = €™ [BE,,,(61)8 + B, (619,
Crnn(01, 1) = ™1 [C8,(81)0 + CL . (8:1)¢]  (38)
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we have from [14] that

n(01) = —Cin(81),  Bia(61) = Ch(60),
Brn(01) = Bpn(61),  Bin(61) = =B (61),
(m=-1,1),  Bl,(61) = —n(n+1)B%,(61),

BY,(61) = n(n + 1)BZ,,,(61) (39)

In (37)—(39) 9, @ are spherical unit vectors and the star (*)
indicates the conjugate complex number.

The differential scattering cross-section is defined as fol-
lows:

o 2
a(b1, p1) = ‘f(gla @1)'
= |fo(61, e1)I> + |fo(61, 01)I>  (40)
where from (37)—(39):
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o(01, 1) nz:lm; 1[n n+1)] h
. [ananBln(al) + lqmanmann(al)]eim‘Pl (42)
and
Qo =i  goin =~ (43)

n(n +1)

The backscattering (radar), forward and total scattering
cross-sections are, respectively

oy = 4na(rm, p1), o5 = 4wo(0, 1),

7 27
Qi = / / o(61, 1) sinby dby dpy.  (44)
91:0 (p1:0
Substituting from (31) into (41) and (42), we obtain
fo(61, 01) = f§(61, @1) + 6 fo(61, 1),
Fo(61, 1) = fO(01, @1) + 61, (61, 1) (45)

where [, fg are given again by (41), (42), respectively, with
Fnn(0), Grn(O) in place of Fpyy, Gn, While 6 fg, 6 f, are
given by the same equations, with § Fi,p, G pn in place of
Frn, Gmn, respectively.

Next, substituting from (45) into (40), we find

o(81, 01) = 0°(61, ¢1) + 60 (61, ¢1) (46)

where

a®(81, @1) = | f5 (61, §P1)|2 + | fo(61, <P1)|2
50(01, 1) = 2{Re [f3 (61, w1)| Re [6fs(01, ¢1)]
+1Im [£ (81, o1)]Im [6f5(61, 1))
+Re[f°(9 e1)|Re[6f, (01, p1)]
+Im (61, )] Im [6 (61, p1)]}. (48)

47

In (48), we have omitted second order differentials. Also, the
operator Re (Im) represents the Real (Imaginary) part. From
(44), (46)—(48) we obtain easily the zero order (unperturebed)
term, as well as its first-order perturbation do for the various
scattering cross-sections, due to the presence of the metallic
sphere with small radius. It can be proved analytically after
straightforward but lengthy calculations, the expected result
that o3, and o are independent of ;.

Finally, from (44) and (46) we find

Q: = QF +6Q; (49)
where
n+1) 9 2
= o e IO + 16w (O)) 50)
n{n+1
5. = 2 >
(B2, — E2,)[Re (Frnn(0)) Re (6F_nn)
+Im (Frpn (0) Im (6 F_ 1)
—Re (Gmn(0))Re (6G—mn)
— Im (Gpn (0) Im (6G — )]

2By Fy [Re (Finn(0)) T (6F )
—Im (an(O)) Re (5F—mn)
— Re (Grma(0)) I (6G - mn)

I (G (0)) Re (6G -]} (51)

The results (50) and (51) were obtained after very lengthy,
but straightforward, calculations by substituting from (41) and
(42), (46)—(48) in the last of (44) and by using the expressions
for the B’s in (41) and (42) in terms of Legendre functions
[14], as well as some known integrals of these last functions

[13]. These results should conform with the forward scattering
theorem [19], which for the present problem has the expression

(52)

Using the fact that for 6; = 1 = 0,3 = 6 and i = @, we have

4w

Q= T Im [E,; f5(0, 0) + Eqoy f(0, 0)] (53)

where fy, f, are given in (41) and (42). Substituting from
(45), (49) in (53) we obtain

A7
0 [
Qt_k

6Qt =7 Im [Eow5f6 + Eoyéftp]

Im [Eo;cfg (0 0) + Eoyf¢(0 0)]

(54)

The very lengthy expressions of the various coefficients do
not permit the analytical proof of (54). Their validity was
verified numerically to a very good accuracy, for all values
of the parameters that were used, providing a very good check
for the correctness of our solution.
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{II. DIELECTRIC SPHERE OF SMALL RADIUS,
EMBEDDED INTO ANOTHER DIELECTRIC ONE

In the present section, we examine the scattering of a plane
electromagnetic wave by a dielectric sphere of small radius,
coated eccentrically by another dielectric one. The geometry of
the problem is again shown in Fig. 1. The only difference from
Section II is that the perfectly conducting sphere of region 3 is
now substituted by a lossless dielectric one, with parameters
€3, W3, k3.

The fields in regions 1 and 2 are again given by (1), (2),
(9), (10) and (7) and (8), respectively. Of course, the various
expansion coefficients have different expressions, which will
be given here. In the present problem, there is also an
electromagnetic field inside the inner dielectric sphere. The
intensities of this last field are

=Y Y i

n=lm=-n

mnm( ) k37"27 027 LPQ)

+ Zmnﬁg%(ki’)rb 927 (102)] (55)

[anﬁggz(k?)r% 92’ QOZ)

+ Zmnmgy{?l(k3r27 027 (102)]7
Gs = (ua/es)'/?  (56)
=(1) =(1)

where 1Mynn , fisnn are now expressed with respect to the origin
Os. The boundary conditions at 7y = R; are again given by
(16), but these at ry = Ry are in this case the following:

A_ X (Ez — Eg) = 0, TAZ./L'(.E?Q — It_ig) = 0. (57)

Satisfaction of the boundary conditions (57) by the use
of (11) (and the analogous for ﬁg%(kgrl, 01, ¢1)) into (7)
and (8) and the orthogonal properties of the vector functions
B',C_" concludes finally to the following sets of equations
(jm| € n,n 2 1):

Jn(P2)Z Z Aul ul+B

ul] + Pm'nhn(pZ)

I=1u=-1,1
- mn]n(p4)7 (P4 - k3R2) (58)
]n P2 Z Z BM Sul +A#nTul] + anhZ(P2)
I=lu=—1,1
_ ke
3

je /72)2 > (A%, Su + B Tyl + Prnhi(p2)

I=lu=-1,1
= 22 Xonid(pa)  (60)
3
pZ)Z Z Bul ul+Aul ]
l=lu=-1,1
k .
+ anhn(p2) = k—g'@zmn]n(p4)- (61)
243

By eliminating the coefficients X,,,,,, Z,,, from (58)-(61),
we obtain again (18) and (19) with the only difference in the
expressions of the coefficients L,, and L2, which in this case
are

padn(p2) 7 (pa) — 1332 (p2)in(pa)
pshi(02)3n(pa) — p2hn(p2)3d(pa)’
d _ €2Jn(p2)jn(pa) — €355 (p2)jn(pa)
" e3hd(p2)in(pa) — e2hn(p2)d (pa) .
Satisfaction of the boundary conditions (16), provides again
(21)-(25), with the only difference in the expressions of
Py, Q1 caused by the new L;, L¢, respectively, given in (62).
Following next the same steps as in Section II, we conclude
to (26)—(29). Then, we use the limiting values (30) into
(26), (27) and retain only the dominant terms with respect to
p2{ps = paks/k2). By substituting there from (31), we finally
find in analogy to (32), (33) the relations (m = -1, 1,n 2 1)

L, =

(62)

(5Smn = 22021 Z Z Z {Q;LCmn ul

v=lu=—1lw=-1,1

+ ‘ISD;Lnln et 1Swo(0) + [qﬂC#zlnB;ff
+ qurllen ul ] w’U(O)} (63)
2"92 /
6Tmn =—1 Z Z Z {qGCmn ul
v=lu=-1lw=-—1,1
+ q#Dmn ul ]SU)U(O) + [qG mn ul
+ q,LD;fllanf’]va(O)} 64)
where
€2 — €3 M2 — 13
e = P — —_— . 65
4 2ea + €3 i 2p2 + p3 (6)

In (63), (64) we have used the limiting values ((62), (30))

2ip3 2ip3
b= Li=-"
Ln, Ly = O(p3™*Y),  (n22) (66)

and we have omitted the higher-order products referred after
(34). Also, in this case the dominant terms are the ones with
I = 1, of order p3. The omitted terms are of order p3 and
higher (I = 2).

Using next the procedure described in Section II, we con-
clude finally to formulas (35) for 6 F,,.,., 6G ., and to formulas
(36)—(54) for the scattered field and the various scattering
cross-sections.

Another check for the correctness of our results, moreover
to (54), is to try obtaining the results of Section II from the
corresponding ones of the present section by using the limiting
values €3 — oo, w3 — O for the material of region 3, which
correspond to a perfect conductor [20]. It is evident from (62)
that in this special case L, and L2 tend to the expressions (20).
Also, by (65), (66) we see that L;, L% tend to the expressions
(34) (9 — —1,g, — 1/2). The same is true for 6 S, 6Tmn
in (63), (64) that tend to the corresponding ones in (32), (33).
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Fig. 2. Backscattering cross-section for ez /€1 = 5.5, R1/A1 = 0.7, 6, = 45°, ¢ = 45°, Eop = 1, Eoy = 0 (metallic inner sphere).

Setting now es = €2, uz = pa(ps = pyg) in (62)—~(65), we
obtain L, = L& = 0, 6Smn = 6Tpn = 0 (also 6F, =
8Gmn = 0 from (35)), so there results that P,,,, = Q. =0
((18),(19)) and Spn = Smn(o)min - Tmn(o)van =
Finn(0), Gin = Grn(0) ((31)) as expected for the problem
of a homogeneous dielectric sphere.

Setting next e; = €1, 2 = pi(ps = p1) in (26)~(29),
we obtain I, = I}, = 0,5, = Smn(0), Tn = Timn(0)
(ﬁSmn#: 6T mn = 0 from (32), (33), (63), (64)), EQ(O) =
E¢, Hy(0) = H™, Fpn(0) = Gmn(0) = 0 ((A3), (A4)
of Appendix A), 0 = 0,Q% = 0 ((41), (42), (47), (50)). In
addition, we obtain that §F,,, and 6G,,, are different than
zero ((35), (32), (33)), expressing the coefficients of the field
scattered by the small inner sphere. Nevertheless, 6o and §Q;
((48) and (51)) become equal to zero in this special case where
the external dielectric sphere is absent (the zero-order terms
vanish) and our assumptions are not valid, so that higher-order
terms should also be retained in our solution.

In the special case d = O (concentric spheres), using
the values [18] 50(0) = 1,7,(0) = O(n = 1) we can
easily find the various simplified expressions. For example,
Prn = LoySmn, Qmn = LT, in (18), (19), because in
this special case A% = 0 for u # m or for u m
and I # n,BY%, = 0 for each value of u,! as can be
seen by (13), (14) and A7 1, as it is evident from
(11) in this case that r{ = ry, 61 = 3 and v; = 9.
Analogous remarks are valid for C;,‘fn,D}‘,fn ((15) or (12)),
so the various summations disappear in (21)-(24), substituted
only by P, Qmny Pmn, @mn, respectively, these in (26),
(27) are substituted by L,,S;nn, L‘fl Tmn, respectively, etc. The
same results were also obtained from the independent solution

of the problem with two concentric spheres for general values
of ps, as well as for py small.

IV. NUMERICAL RESULTS AND DISCUSSION

In Figs. 2-12, the various scattering cross-sections are given
for the configuration of Fig. 1 for metallic and dielectric
inner sphere. Figs. 27 are referred to a metallic inner sphere.
More analytically, in Figs. 2 and 3 the backscattering cross-
section oy is plotted versus d/Ry and 6, respectively, for
E,, = 1,E,, = 0. In Fig. 4, @, (total scattering cross-
section), is plotted versus 6y, for the same polarization. In
Fig. 5, oy, is plotted versus g for E,; = 0, E,y, = 1, while
in Figs. 6 and 7, o}, and oy (forward scattering cross-section),
respectively, are plotted versus d/ Ry, for E,, = E,y = 1/ V2.

Figs. 8-12 are referred to a dielectric inner sphere. In Fig. 8,
oy is plotted versus 8, for F,p, = 1, FEy, = 0. In Fig. 9, oy
is plotted versus d/R,, while in Fig. 10, o is plotied versus
@, both for By, = 0,E,, = 1.

Finally, in Figs. 11 and 12 o, and @, respectively, are
plotted versus d/R; for Eop = Eoy = 1/ V2.

Our results are symmetrical about the plane defined by the
01z axis and the direction of polarization E‘B, as well as
about its perpendicular one, as it is imposed by the geometry
of the scatterer (Figs. 5, 9, 10, and others).

In all figures we have taken gy = po = pg. Also, Ay =
27 /ky is the wavelength in region 1. The case Rp/R; = 0
corresponds to the problem of the unperturbed (homogeneous)
dielectric sphere of radius R;.

A result expected to hold from reciprocity and seen in
Figs. 7, 10 (4, 12) is that o4 (Q);) has the same values for angles
Ay with sum equal to , i.e. for #g and © — 6.
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Fig. 3. Backscattering cross-section for ez /e; = 2.54, R1 /A = 07, d/Ry = 0.6, ¢o = 45°, Eor = 1, Eoy = 0 (metallic inner sphere).
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Fig. 4. Total scattering cross-section for ez /e1 = 2.54, R1 /A1 = 0.7, d/R1 = 0.6, ¢o = 45°, Eoz = 1, Eoy = 0 (metallic inner sphere).

From the above figures, it is evident that the presence of
a metallic or dielectric small sphere inside a dielectric one
changes its various scattering cross-sections, increasing or
decreasing them depending on the values of the parameters.
This change may be uvseful in practice, to obtain informa-
tion about inhomogeneities or nonsymmetries inside dielectric
spheres by observing their scattered field produced by the

incidence of a plane electromagnetic wave. Inversely, one
can change the various scattering cross-sections of a dielectric
sphere by simply placing a metallic or dielectric small sphere
inside it.

More analytically, from Figs. 6, 11, and others available,
it seems that o, takes its greatest or smallest value or both
(depending on the parameters), for 8o = 0 (small inner sphere
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Fig. 5. Backscattering cross-section for €3/¢q = 5.5, R1 /A1 = 0.7, d/R1 = 0.6, R2/R; = 0.01, Eyx = 0, Eoy = 1 (metallic inner sphere).
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Fig. 6. Backscatiering cross-section for ez/e1 = 5.5, R1 /A1 = 0.7, Rz /Ry

on O;z; axis) and for some value of d/R; in the range
0.5 < d/Ry < 1, for metallic as well as for diclectric small
inner sphere. This is also valid for o and ()¢, as can be seen
from Figs. 7 and 12 (the values for 8o = 0 and p = 7 are

0.6 0.7 0.8 0.9
= 0.005, ¢p = 45°, By, = E,y = 1/4/2 (metallic inner sphere).

T Tare,
.0 i

equal in this case, because of the reciprocity). From the same
Figs. 6, 7, 11, 12, and others available, is evident the smaller
variation of o3, o5 and Qy, with respect to d/ Ry, in the range
0.5 < d/R; < 1, for intermediate values of 0o(0 < 0o < ),
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Fig. 7. Forward scattering cross-section for ea/e; = 5.5, R1 /A1 = 0.7, Rao/R1 = 0.02, ¢ = 45°, Eop = Eoy = 1/\/5 (metallic inner sphere).
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Fig. 8. Backscattering cross-section for €2 /€1 = 2.54. €3/€1 = 5.5, Ri /A1 = 0.7, d/R; = 0.6, 9o = 45°, Eor = 1, B,y = 0 (dielectric inner sphere).

compared to that for §p = 0 or o = =« (smallest variation in comparison to that of oy and Qy, especially in the case of
for 8o = w/2). metallic ones.

From the figures presented here and from others available, is Finally, from Figs. 5, 9, 10, and others available, it is seen
evident the higher sensitivity of o3 to internal inhomogeneities, that 03,07 and (); appear a maximum or minimum value
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Fig. 10. Forward scattering cross-section for ez/e; = 5.5, e3fe1 = 2.54, Ri/A1 = 0.7, d/Ry = 0.6, R2/R1 = 0.02, Eoz = 0, Eoy

(dielectric inner sphere).

(depending on the parameters) with respect to o, when go

1

The former observations are very useful for the detection of

is equal or differs by 7 rads from the angle between O;z1 axis the small inhomogeneity, i.e. the determination of its position,
and Eo, and inversely a minimum or maximum value, when from the measurement of the scattered field. This position

po differs by 7/2 or 37/2 rads from that angle.

will be on the diameter of the external sphere lying in that
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(dielectric inner sphere).

direction of propagation of the incident field, which makes the
varlous scattering cross-sections largest or smallest. Moreover,
the extremum of o} reveals not only the above diameter, but
also its radius where the inhomogeneity will lie. This radius
is in the opposite side from that of the direction of incidence.
The small inhomogeneity will lie also on that plane (or its
perpendicular one) defined by the direction of propagation of
the incident field and the vector Eo, where oy, o¢ and @
appear an extremurn.

As it is evident by formulas (32), (33), (63), (64), and
(35)-(51), we can easily calculate the various scattering cross-
sections for each small value of Ry/Rj, if the rest of the
known parameters remain constant, by simply using the results
given in Figs. 2-12, because §o and 6Q); are analogous to p3,
i.e. analogous to (Ry/R;)3. The same is valid for various
values of g. # 0 when ¢, = 0 [g, # 0 when ¢, = 0],
as it is seen by formulas (63)—(65) and (35)—(51). In this
case, 0Smn, 0Tmn ~ ge[~ g.] and finally 60 and 6}, are
analogous to these quantities, so it is easy to calculate the
various scattering cross-sections for each different value of
€3/€alps/ 2] (only of e3/eq for Figs. 2-12 where us = p2)
if the rest known parameters of the problem remain constant.
For this purpose, the following values are necessary, which are
not marked on the corresponding figures: o /A = 4.638782
(Figs. 5, 6, 9. and 11), 03/A} 195.2905 (Figs. 7 and
10) and Qg/A? 7.71444 (Fig. 12). Inversely, the above
remarks are useful for the calculation of the radius Ry or
of the constitutive parameters of the inner small sphere, i.e.

for its identification, from the measurement of the scattered
field.

An indication about the range of validity of the assumption
referred above (7) and the error bounds of our approximation
p2 — 0, can be given in the special case d = 0 by comparing
our results with the available exact ones for the problem of
two concentric spheres. The percent errors of our results, for
special values of the parameters, are given in Table I. From
this table, it is seen that, at least in this special case, these
errors are low enough even for values of po > 1, especially
for oy and @, and for a dielectric inner sphere. The maximum
value of p, used in our figures for the parameters of Table
I and Ry/R; = 0.02 is 0.140, keeping the percent error low
enough in each case. The technique of the present paper is
also applicable to complex scatterers other than sphere.

APPENDIX A

The expansion coefficients S,,,,(0), T1n(0O), Frnn(O),
Gnn (0) ((3)-(6)) for the problem of the scattering of a plane
electromagnetic wave from an homogencous dielectric sphere
of radius R;, with parameters e3, pg, ko, surrounded by an
homogeneous medium of infinite extent, with parameters ¢,
11, k1, are calculated easily by the satisfaction of the boundary
conditions at 1 = R; and have the following expressions
(m=-1,1n = 1)

— Z,u2 (on - Z77/Z£/1oy)g'm7'z
p1lp1hn(p1)it(ps) — p2hi(p1)dn(ps)]

Smn(0) (AD)
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(dielectric inner sphere).

TABLE I
PERCENT ERROR BETWEEN OUR RESULTS AND THE EXACT ONES FOR d = 0

Metallic inner sphere
(en/e4=2.54, Ry/24=0.7)

Dielectric inner sphere
(e5/€172.54,€5/€1=5.5,R,/1,=0.")

P2 | /Ry % Of Q % op Q
0.210] 0.03|| -2.8x1073 {2.5/x10™2 1.17x1072 | —7.6x107% [2.8%107% |1.2x10~%
0.350( 0.05( ~-8.37x107313.52x1073 1.55x1072| —7.26x107213.76x10731 1672103
0.491) 0.07|| 0.147  lo.19%6 0.082 -0.0272  10.021  19.31x10-3
0.631] 0.09|| 1.37 0.677 0.256 -0.0525 {0.0767 10.0329
0.771| 0.1  6.37 1.54 0.462 -0.023  {0.212 10,0881
1.051| 0.15| 36.7 0.186 | -1.46 0.926  10.928  10.347
1.332] 0.19)| —7.6 9.5 7.78 4.2 2.2 0.65
1.612| 0.23(|-167.9  L[22.6  |-16.1 3.2 2.8 0.265
1.893| 0.27| -231.9  lag.1  l26.6 -15 0.728 1.5
2173 0.31)| ~241.9  Leo.s  F40.0 -37.5 41 4.3

Z.Tnkl k2/4‘2 (on - imEoy)gmn
pr[kfu2hn (p1)53(p3) — K3p1hd (p1)dn(p3)]

Tmn(O) =

(A2)
an(o) = (Eo:c - Zman)gmn
- 11Gn(p1)5E(p3) — 1252 (p1)5n (ps) (A3)
tihn(p1)id(p3) — p2hd(01)in(p3)
Gmn(0) = m(Eor — imEoy)gmn
. e17n(p1)52(p3) — €25¢(01)jnlp3) (Ad)

€1hn(p1)3d(p3) — e2h&(p1)jn(ps)

where p1, p3 and g,,,, are given in (25). In (Al) and (A2)
the Wronskian relation j, (p1)he (p1) — 52(p1)hn(p1) = i/p1
is used.

APPENDIX B

The symbols a(m, n|—p, s|p),a(n, s, p), etc., appearing in
(13), (14), are calculated along steps described in the Appendix
of [15], which will not be repeated here. There, are also found
certain special values of them, as well as of A}'" and B,
necessary for the solution of the present problems. Some other

special values of these symbols useful in the present work and
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not appearing in [15], are related to the ones found there by
the following very simple equations:

a(£l, 1lm, nJn — 1) = a(m, n| £ 1, 1jn — 1),

a(x1, 1ym, njn+ 1) = a(m, n| £ 1, 1|n + 1) (B1)
a(0, 1m, n|n £ 1) = a(m, n|0, 1jn £ 1) (B2)
b(l,n,n+2)=b(n, 1, n+2)=0 (B3)
a(£1, 1m, n|n, n — 1)b(1, n, n)
= (=1)"ra(m, n| £ 1, 1|n, n — 1)b(n, 1, n) (B4)
a(0, 1jm, njn, n — 1)b(1, n, n)
= (=) rr,a(m, 0|0, 1|n, n — 1)b(n, 1, n) (B5)
Chn = (=) AT, Dy = (-1)"nBI,
(m=-1,1,u=-1,0,1,n21) (B6)
where
2(2n+1)
n = x B7
n In(n+1) ®B7)
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