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Scattering From a Sphere of Small Radius

Embedded Into a Dielectric One
John A. Roumeliotis, Nikolaos B. Kakogiannos, and John D. Kanellopoulos

Abstract-In this paper, the scattering of a plane electromag-
netic wave from a metallic or dielectric sphere of electrically

small radius, embedded into a dielectric one, is considered. The

classical method of separation of variables is used, combined
with translational addition theorems for spherical vector wave

functions. Analytical expressions are obtained for the scattered
field and the various scattering cross-sections, in the case of an
inner sphere with electrically small radius. Numerical results
are given for various values of the parameters and for metallic
and dielectric inner sphere. Some remarks are made about the
possibility of detection or identification of inhomogeneities or

nonsymmetries.

I. INTRODUCTION

sCATTERING from composite bodies can give informa-

tion for their internal composition. Thus, by observing

their scattered field one can detect inner inhomogeneities,

nonsymmetries, etc. The shape of the boundaries of such

bodies severely limits ,the possibility for analytical solution

of the scattering problem. Various numerical techniques are

usually used for complicated geometries, a few examples of

which appear in the recent papers [1 ]–[6]. Also, perturbational

methods can be used, like those appearing in [7]–[9], for

example.

In the present paper, the scattering of a plane electromag-

netic wave by a metallic or dielectric sphere of electrically

small (much smaller than the wavelength) radius, embedded

into a dielectric one, is considered (see Fig. 1). A special

analytical perturbation method is used in order to obtain ap-

proximate (first order) analytical expressions for the scattered

field and the various scattering cross-sections. This method

was initially developed for the scalar problem of scattering

from an infinite cylinder of small radius embedded into a

dielectric one [10]. The present vector problem appears much

more complex and very lengthy in algebraic manipulation

than the previous scalar one. The method of separation of

variables is used, together with translational addition theorems

for spherical vector wave functions.

The scattering of a plane electromagnetic wave by two

arbitrary spheres outside of each other was solved elsewhere

[11], [12].

The case of a metallic inner sphere with small (electrically)

radius is examined in Section II, while that of a small

dielectric inner sphere is examined in Section III. All metallic

or dielectric materials are lossless. Finally, in Section IV,

numerical results for various scattering cross-sections are
given for various values of the parameters. Also, some remarks
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are made about the possibility of detection or identification of

inhomogeneities or nonsymmetries.

II. METALLIC SPHERE OF SMALL RADIUS

EMBEDDED INTO A DIELECTRIC ONE

In this section, we examine the scattering of a plane elec-

tromagnetic wave from a perfectly conducting metallic sphere

of small radius, coated eccentrically by a dielectric one. The

geometry of the problem is shown in Fig. 1. The outer and

inner sphere radii are RI and R2, respectively, while d is the

distance between their centers 01 and 02, which are origins

of two cartesian coordinate systems with parallel axes. The

origin Oz lies at the general position (d, 190, qo) of the system

OIZlyl ZI. The dielectric constant, the magnetic permeability,

and the wavenumber are 61, WI, kl and cz, LLZ, and kz in

regions 1 and 2, respectively. The materials of both regions are

lossless.+Region 3 in the present case is perfectly conducting.

Let E’mc be the electric field intensity of an incident

plane electromagnetic wave traveling in the +Z direction that

impinges on the scatterer of Fig. 1. This intensity has the

expression [13], [14]:

@n. = ~oeiklzl

“ [Tn$!(klw 01,91)

+ 77:W17-1$h, $%)] (1)

where l?. = EOZ2 + EOyy( I~0 I = 1) defines the direction of

polarization of the wave and fig~, F&i, (m = +1) are the

complex spherical eigenvectors that can be found in [14], [15].

These eigenvectors are expressed with respect to the origin 01.

The magnetic field intensity of the incident wave is
(x2

%+1
17inc = –;(EO. + iEo,)~z”+l T

rl=l

91)1

) #l)(k,T,, 6’,, !01)1>. [fif(l (~.rl, 01, 91 + ln(l= ~M1,e1)1,2 (2)

The time factor exp ( –itit) is omitted everywhere.
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Fig. 1. Geometry of the scatterer.

Let ~z (0), I?z (0) be the field intensities in region 2, for the

unperturbed (homogeneous) dielectric sphere of radius RI, i.e.

in the absence of the inner perfectly conducting sphere. These

intensities have the expressions

+ Tmn(o)ti$&(k2?-1, ~1, 91)1 (3)

+ Tmn(o)r7&(112~l, ~1> w)],

(2= (v2/c2)1/2 (4)

The intensities of the scattered field in this case, i.e. in the

absence of the inner perfectly conducting sphere, are

.m

fuecH’c(0) = –~~ ~ [Fm. (0)ii$~(kl T-l, 01, pl)

(1~=,m=_,, ,

+ Gmn(0)fi$~(klrl, 01, PI)] (6)

The spherical eigenvectors &$~, d~~ are given by the

same formulas as fh$~, iigi with the only difference that the

spherical Bessel functions of the first kind jn (z), ji~ (z) =

d[zjn (z)]/dz are replaced now by the spherical Hankel func-

tions of the first kind hn (z), h:(x) = d[zhn (z)] /dz, respec-

tively. The superscript (1) is omitted from the Hankel function

for simplicity.

The expressions of Smn(0), Tmn(0), &n(0), Gmn (0),

which are found by the satisfaction of the boundary conditions

at rl = RI, are given in Appendix A.

It is apparent that the presence of the inner conducting

sphere, with small radius, slightly perturbs the above solutions.

To determine the modified so~utions -~z, i?2, -l?Sc,i?sc, we

assume that the standing wave E2 (0), H2 (0) is incident upon

the inner conducting sphere and is scattered by it. Because of

the smallness of its+radius, jhe latter scattered field is very

weak compared to E2 (0), If2 (0), so it will slightly perturb

the expansion coefficients in (3)–(6). The validity of the

above assumption and its limits are examined in Section IV.

The modified solutions ~z, ~2, ~sc, l?” have the following

expressions:

m

n=lm=—1, 1

+ TmnF44(k27-1, f?l, (/q)]
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n=l’m=-n

+ Qmniii~~(k2r2, 02,92)]
1

(8)

cc

n=lm=—1, 1

+ G~~7&A(klrl, 61, Pi)] (9)

In order to satisfy the boundary conditions at rl = RI and

r2 = R2, we re-expand (7) and (8) in terms of the spherical

eigenvectors around the origins 01 and 02, respectively, using

the well-known translational addition theorems [16], [17]:

s=l@=—s

+ ~Bfi$J(~2r2$ 192, p2)] (11)

with

Amn = (–l)~~a(m, nl – ~, S[p)a(n, S, P)jP(~2~)ps

P

. ppm–~(cos O~)ei(m–w)wO (13)

B%= (-l)~~a(m, nl - U, SIP+ 1, p)b(n, s, p+ 1)

P

“ ~p+1(~24ppt7’ (COS~O)fJm-p)wO (14

where P: are the associated Legendre functions.

The expansion coefficients C’~~n and D~3” appearing in

(12) are given by (13) and (14), respectively, with Oh, p~

in place of O., PO where d, 8~, p~ are the coordinates

of 01 with respect to 02. In (13) and (14), the summation

index p varies from In – s I to n + s by steps of 2. From

(11) and (12), one can also easily find the addition theorems

for ii~k(kzrl, 01, 91), H$k(kzn, 6$, 92), respectively, by

simply interchanging r& and iiP, inside the summations. For
the calculation of the symbols a(m, nl – ~, s 1P), a(n, s, p)

etc., see Appendix B.

It can be easily seen from Fig. 1 that in any case 190+ O& =

T and qO — p~ = +m. So, by using the relations cos O& =

–cos%o, exp [i(m – fl)p~] = (–l)m-~ exp [i(rn – V)PO],

P: (–~) = (– l)n+mP~ (x), and the fact that the summation

index p in (13), (14) varies by steps of 2, one can easily prove

the following very simple general relations connecting C’ and

D with A and l?, respectively:

C& = (–l)”+SA;’”, D&’ = (–l)n+s+ll?~ (15)

The unknown expansion coefficients appearing in (7)-(10)

are found by the satisfaction of the boundary conditions at

T1 = Rl:

?1 x (B”’ +@’) = ?~ x &

?l x (m”’ + fin) = ij x fiz (16)

as well as at r2 = Rz

?2x E2=0 (17)

Satisfying (17) by the use of (11) (and the analogous for

F&t(kzrl, 81, pi)) into (7) and using next t~e ~rthogonal

properties of the spherical vector functions l?, C [14] ap-

pearing in the expressions of riinn, iim., we conclude after

straightforward but lengthy calculations to the results ( Iml ~

n,n > 1)

t=l’u=-1,1

cm

where

l% = –.L(P2)/L(P2), L: = –j:(P2)/h:(P2),

p2 = k2R2

Satisfaction of the boundary conditions (16), by using

(18)

(19)

(20)

(12)

(and the analogous for ii$%(kzrz, 02, 92)) into (7) and (8)

(the restriction rl > d is always valid at T-1 = Rl), and by

following analogous steps to those leading in (18), (19), lead

us now, after lengthy calculations, to the following sets of

equations (m = –1, l,n > 1):

cc 1

Smnj. (p3) + ~n(P3)~ ~ [C#/.P.t + D:nQ.l]

1=1 U=–1

= Fmnhn(pl) – (E.. – irnE.v)gm.L(pl) (21)

1=1IF–l

= $[Grnn~s(Pl) - WL(J%. - ~~-%)gmnj;(pl)] (22)

m 1

Sm&(p3) + h:(p3)~ ~ [CA.P.1 + %LQUZ1
t=l’u=-t

‘2 Fmnh:(pl ) – (~oz= # – Zrnl%y)gmnj: (Pl)1 w)
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= ##.hn(p) - m(&Z - iml&)gm.j.(pi)] (24)

where

2n+l
pl = klR1, p3 = LzRI,

~ln = ~rt+l
2’n(’n + 1) ‘

2n+l
g_ln = in+l

2“
(25)

By eliminating the scattering coefficients l?mm and Gm.

from (21)–(24) and by using (18) and (19), two infinite sets

of linear nonhomogeneous equations are obtained for the

expansion coefficients S~n and Tmn:

In (26) and (27), we have made the substitutions

~ = &lkL(pl)~:(p3) – &2~:(pl)kz(p3)
n (28)

#lhn(pl)~~(p3) – p2hi(pl)~n(p3)

~~ = ~lhm(~l)hi(p3) – ~2hg(pl)hn(p3) (29)
~l~n (Pl)j:(P3) – ~2Wi(Pl)jn (P3) “

For general values of pz, the infinite sets of (26) and (27)

can be solved numerically by truncating the summations in

order to obtain a matrix equation. However, if p2 is small, an

analytical procedure can be developed. As p2 ~ O, we use

the following limiting values [18]:

jn(P2) -
1.3.5. .!?2n + 1) ‘

(n+ l)p~
~:(P2) 4 ~ ~ ~

. . . ..(2n+ l)’

.l.3.5... (2n – 1)
hn(P2) - –’

P;+l

h:(pz) - i
1.3.5 . . . (2n – 1).7L

(n> 1). (30)
O;+l ‘

Next, using (30) into (26) and (27), we retain only the

dominant (first-order) terms with respect to p2. Keeping in

mind that in this case the expansion coefficients Smn, Tmn,

Fmm and Gmn can be approximated by the formula

vm.= Vmn(o)+ (w& (31)

where V stands for anyone of S, T, F, G and 6Vmn is a small

perturbation of Vmn (0), we substitute in (26) and (27), and

we finally conclude at the relations (m = – 1, 1, n > 1):

6Tmn = ‘~ .2 ~ ~ {[-2C”’ B~; +DU1 A“”]
&f

mn mn U1

‘U=17L=-l W=-1, 1

. SW.(0)+ [–2C;;A;~ + D;;l?;;]TWV(0)}. (33)

In (32) and (33), we have used the limiting values ((20), (30))

and we have omitted the higher-order products L16SWV,

L@’WV, L16TWu , L;6TWU . It is evident from (26), (27), (34)

that the dominant terms are these with 1 = 1. The omitted

terms with Z > 2 are of order p; or higher.

By returning next in (21)–(24) and by eliminating the

coefficients PUl, QUZ with the use of (18) and (19), we obtain

the expressions for the scattered field coefficients Fmn and

Gm.. More analytically, from (21) or (23) (from (22) or (24))

by using (31), (26) and (Al), (A3) from the Appendix A
((31), (27) and (A2), (A4) from the Appendix A), we finally

conclude—after some manipulation—the following relations

for 6Fmn(6Gmn):

[
6Fmm = -- ~h;(;~)]tismn,

n nn

[

PI ~i(P3)
($Gmn = — —

‘~(P3) fTmn.

p3 hg(pl)–I&hg(pl)1 (35)

Using next the asymptotic expansion for hn (kl TI ) [13] in

(9) we take the scattered far field expression

in terms of the

1(~1, 91) =

—

Setting now

Bmn(Ol,

dmn(Ol,
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we have from [14] that

(m= -1, 1), B:n(ol) = –n(n + l)13!ln(Q,

Byn(dl) = n(n + l)mln(dl) (39)

In (37)–(39) ~, @ are spherical unit vectors and the star (*)

indicates the conjugate complex number.

The

lows:

differential scattering cross-section is defined as fol-

where

f9(&,

2

dh, w) = i’(h) w)

= l.fe(~l, P1)12+ I.fw(h, 91)12 (40)

from (37)-(39):

PI) = ~ ~ [n(n + 1)]1/2 (–0”+1

cc

kl
n=lm=—1, 1

“ [lhnl~mxn(~d + %nGJ%t(Q1’’mwl (41)

and

i
qln = 2, ‘–1”= –n(n + 1)”

(43)

The backscattering (radar), forward and total scattering

cross-sections are, respectively

Substituting from (31) into (41) and (42), we obtain

where j$, ~$ are given again by (41), (42), respectively, with

Fmn (0), Gmn (0) in place of ~~~, Grin, while 6fe, 8 fq are

given by the same equations, with 6F~n, dGnn in place of

F mn >Gmn, respectively.

Next, substituting from (45) into (40), we find

0(61, pl) = O“(dl,W) + h(h, w) (46)

where

In (48), we have omitted second order differentials. Also, the

operator Re (Ire) represents the Real (Imaginary) part. From

(44), (46)-(48) we obtain easily the zero order (unperturelbed)

term, as well as its first-order perturbation &r for the various

scattering cross-sections, due to the presence of the metallic

sphere with small radius. It can be proved analytically after

straightforward but lengthy calculations, the expected result

that ~b and of are independent of P1.

Finally, from (44) and (46) we find

Qt = Q; + 6Qt (49)

where

m7J2(7-L+ 1)2
Q:=$~l ~n+l [lF1n(0)12 + \G1n(0)12] (50)

n—

. {(l?~m- E&)[Re (E’~~(0)) Re (~F-~~)

+ Im (Finn(0)) Im (8F_mn)

– Re (G~. (0)) Re (/iG-m.)

– Im (Gmn(0)) Im (&G-mm)]

+ 2mEoxEov [Re (F~n(0)) Im (6F-~n)

– Im (Finn(0)) Re (8F_mn)

– Re (Gmm(0)) Im (8G_~m)

+ Im (G~.(0)) Re (6G-~.)]}. (51)

The results (50) and (51) were obtained after very lengthy,

but straightforward, calculations by substituting from (41) and

(42), (46)-(48) in the last of (44) and by using the expressions

for the 1?’s in (41) and (42) in terms of Legendre functions

[14], as well as some known integrals of these last functions

[13]. These results should conform with the forward scattering

theorem [19], which for the present problem has the expression

Qt = ~ Im [-@o. }(o, o)]. (52)

Using the fact that for 6’1 = P1 = 0,2 = ~ and ~ = @,we have

Qt = ~ Im [~..fo(o, 0) + -%fdo, 0)1 (53)

where f o, ~P are given in (41) and (42). Substituting from
(45), (49) in (53) we obtain

Q:= ~ Im [J%$~(o, 0)+ ~...f~(o, 0)],

6Qt = ~ Im [-%dfo + %$f~] (54)

The very lengthy expressions of the various coefficients do

not permit the analytical proof of (54). Their validity was

verified numerically to a very good accuracy, for all values

of the parameters that were used, providing a very good check

for the correctness of our solution.
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III. DIELECTRIC SPHERE OF SMALL RADIUS,

EMBEDDED INTO ANOTHER DIELECTRIC ONE

In the present section, we examine the scattering of a plane

electromagnetic wave by a dielectric sphere of small radius,

coated eccentrically by another dielectric one. The geometry of

the problem is again shown in Fig. 1. The only difference from

Section II is that the perfectly conducting sphere of region 3 is

now substituted by a lossless dielectric one, with parameters

e3, p3, k3.

The fields in regions 1 and 2 are again given by (1), (2),

(9), (10) and (7) and (8), respectively. Of course, the various

expansion coefficients have different expressions, which will

be given here. In the present problem, there is also an

electromagnetic field inside the inner dielectric sphere. The

intensities of this last field are

<3= (rLL3/C3)112 (56)

where rii~~, ?isi are now expressed with respect to the origin

02. The boundary conditions at rl = RI are again given by

(16), but these at rz = R2 are in this case the following:

?2 x (E2 – J?53) = o, ?2Z(172 – 173) = o. (57)

Satisfaction of the boundary conditions (57) by the use

of (11) (and the analogous for ?i$\ (kzrl, 61, P1 )) into (7)

and (8) and the orthogonal properties of the vector functions

~,@ concludes finally to the following sets of equations

(Iml ~ n,n > 1):

m

1=1U=–1,1

= Xmnjn ((74), (P4 = ~3R2) (58)

cc

&2)~ ~ [~;z.SuZ + A&~’1] + Q7nnh:(p2)

lxlu=–1, 1

—— : .znnj:(P4) (59)

1=1U=–1> 1

k3p’2
+ Q77mhn(p2) = —Z~njn(p4). (61)

k2p3

By eliminating the coefficients Xmn, Zmn from (58)–(61),

we obtain again (18) and (19) with the only difference in the

expressions of the coefficients Ln and L:, which in this case

are

Satisfaction of the boundary conditions (16), provides again

(21)-(25), with the only difference in the expressions of
Pul, Q.1, caused by the new L1, L?, respectively, given in (62).

Following next the same steps as in Section II, we conclude

to (26)–(29). Then, we use the limiting values (30) into

(26), (27) and retain only the dominant terms with respect to

P2 (P4 = P2k3/k2). By substituting there from (31), we finally
find in analogy to (32), (33) the relations (m = – 1, 1, n > 1)

where

In (63), (64) we have used the limiting values ((62), (30))

L., L: = O(p~+l), (7L~ 2) (66)

and we have omitted the higher-order products referred after

(34). Also, in this case the dominant terms are the ones with

1 = 1, of order p:. The omitted terms are of order p; and

higher (1 > 2).

Using next the procedure described in Section II, we con-
clude finally to formulas (35) for 6F~n, 6G~n and to formulas

(36)-(54) for the scattered field and the various scattering

cross-sections.

Another check for the correctness of our results, moreover

to (54), is to try obtaining the results of Section II from the

corresponding ones of the present section by using the limiting

values 63 - CO, ,U3 ~ O for the material of region 3, which

correspond to a perfect conductor [20]. It is evident from (62)

that in this special case Ln and L; tend to the expressions (20).

Also, by (65), (66) we see that L1, L? tend to the expressions

(34) (q. ~ –1,qp -+ 1/2). The same is true for 6Smm, 6Tmn

in (63), (64) that tend to the corresponding ones in (32), (33).
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Fig. 2.
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Backscattering cross-section for 62/61 = 5.5, R1/A1 = 0.7, i30 = 45°, ~. = 45°, EOZ = 1, E“ ~ = O (metallic inner sphere).

Setting now 63 = CZ, K3 = WZ(P2 = p4) in (62)–(65), we

obtain L. = L: = O, 6Smn = i$T~n = O (also 6F~n =

tiG~n = O from (35)), so there results that Pm. = Qmn = O

((18), (19)) and S’nn = S~n(0), Tnn = Tmn(0), Fmn =

l?~~ (0), Gmn = G~~ (0) ((31)) as expected for the problem

of a homogeneous dielectric sphere.

Setting next Cz = cl, LLz = PI (p3 = pl) in (26)-(29),

we obtain In = IL = O, Smn = Smn(0), Tm. = Tmn(0)

(ijS~~+= 6T~~ ~ O from (32), (33), (63), (64)), l%(o) =

E’”’, H2(0) = 2P’, Fnn(0) = Gn. (0) = O ((A3), (A4)

of Appendix A), o“ = O, Q; = O ((41), (42), (47), (50)). In

addition, we obtain that 6F~~ and SGmn a-e different than
zero ((35), (32), (33)), expressing the coefficients of the field

scattered by the small inner sphere. Nevertheless, 60 and i5Qt

((48) and (51)) become equal to zero in this special case where

the external dielectric sphere is absent (the zero-order terms

vanish) and our assumptions are not valid, so that higher-order

terms should also be retained in our solution.

In the special case d = O (concentric spheres), using

the values [18] jo(0) = l,j~(0) = O(n > 1) we can

easily find the various simplified expressions. For example,

~~ = L~S~~, Q~~ = L~T~n in (18), (19), because inP

this special case A#r, =Oforu+morforu=m

and 1 # n, B~ln = O for each value of u, 1 as can be

seen by (13), (14) and A:; = 1, as it is evident from

(11) in this case that rl = r~, @l = 6’z and WI = PZ.

Analogous remarks are valid for C&lm, ll~m ((15) or (12)),

so the various summations disappear in (2 1)–(24), substituted

only by p~~, Q~~, F’~~, Q~~, respectively, these in (26),
(27) are substituted by LnS~n, L~T~n, respectively, etc. The

same results were also obtained from the independent solution

of the problem with two concentric spheres for general

of pz, as well as for pz small.

IV. NUMERICAL RESULTS AND DISCUSSION

values

In Figs. 2–12, the various scattering cross-sections are given

for the configuration of Fig. 1 for metallic and dielectric

inner sphere. Figs. 2–7 are referred to a metallic inner sphere.

More analytically, in Figs. 2 and 3 the backscattering cross-

section ~b is plotted versus d/R1 and ~., respectively, for

E ox = l,EOY = O. In Fig. 4, Qt (total scattering cross-

section), is plotted versus 60, for the same polarization. In
Fig. 5, ~b is plotted versus q. for EOX = O,Eoy = 1, while

in Figs. 6 and 7, ub and of (forward scattering cross-section),

respectively, are plotted versus d/R1, for EOZ = Eoy = l/v%

Figs. 8–1 2 are referred to a dielectric inner sphere. In Fig. 8,

~b is plotted versus @o,for EOZ = 1, EOV = O. In Fig. 9, Ob

is plotted versus d/R1, while in Fig. 10, of is plotted versus

PO, both for EOZ = O,EOY == 1.
Finally, in Figs. 11 and 12 ~b and Qt, respectively, are

plotted versus d/R1 for EOZ = EOY = l/~.

Our results are symmetrical about the plane ~efined by the

Olzl axis and the direction of polarization Eo, as well as

about its perpendicular one, as it is imposed by the geometry

of the scatterer (Figs. 5, 9, 10, and others).

In all figures we have taken Ml = &2 = p3. Also, Al =

27r/kl is the wavelength in region 1. The case R2/Rl = O

corresponds to the problem of the unperturbed (homogeneous)

dielectric sphere of radius RI.

A result expected to hold from reciprocity and seen in

Figs. 7, 10 (4, 12) is that of (Qt) has the same values for angles

00 with sum equal to n, i.e. for 60 and m – /3..
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Total scattering cross-section for ez/eI = 2.54, RI /)iI = 0.7, d/Rl = 0.6, ~o = 45°, EOT = 1, EOY = O (metallic inner sphere)

From the above figures, it is evident that the presence of incidence of a plane electromagnetic wave. Inversely, one
a metallic or dielectric small sphere inside a dielectric one can change the various scattering cross-sections of a dielectric
changes its various scattering cross-sections, increasing or sphere by simply placing a metallic or dielectric small sphere
decreasing them depending on the values of the parameters. inside it.

This change may be useful in practice, to obtain informa- More analytically, from Figs. 6, 11, and others available,

tion about inhomogeneities or nonsymmetries inside dielectric it seems that ~b takes its greatest or smallest value or both

spheres by observing their scattered field produced by the (depending on the parameters), for 60 = O (small inner sphere
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Fig. 5. Backscattering cross-section for 62 /eI = 5.5, RI /AI = 0.7, d/RI = 0.6, R2/RI = 0.01, Ik = 0, J?%y = 1 (metallic inner sphere).

Fig. 6. sphere).

on 01 Z1 axis) and for some value of d/R1 in the range equal in this case, because of the reciprocity). From the same

0.5< d/R1 < 1,for metallic as well as for dielectric small Figs. 6, 7, 11, 12, and others available, is evident the smaller

inner sphere. This is also valid for of and Qt, as can be seen variation of ~b, crf and Qt, with respect to d/Rl, in the range

from Figs. 7 and 12 (the values for 60 = O and 190 = m are 0.5< d/Rl <1, for intermediate values of 00(0 <00< m),
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Fig. 7. Forward scattering cross-section for ez/cI = 5.5, RI /AI = 0.7, R2/R1 = 0.02, 4C = 45°, EOX = Eov = 1/W (metallic inner sphere).
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Fig. 8. Backscattering cross-section for e2/E1 = 2,54, e3/cI = 5.5, RI/A1 = 0.7, d/R1 = 0.6, QIO= 45°, EOL = 1,Eov = O (dielectric inner sphere).

compared to that for 00 = O or (30 = m (smallest variation in comparison to that of of and Qt, especially in the case of

for 190 = 7r/2). metallic ones.

From the figures presented here and from others available, is Finally, from Figs. 5, 9, 10, and others available, it is seen

evident the higher sensitivity of ~b to internal inhomogeneities, that ~b, of and Qt appear a maximum or minimum value



ROUMEL1OT1S et al.: SCATTERING FROM A SPHERE OF SMALL RADIUS EMBEDDED INTO A DIELECTRIC ONE 165

c3b/A;

4.70

4.69

4.68

L.67

L.66

4.65

f+.64

4.63

63&06

6.=0” ,180’

%=45” ,135”,
225°,3150

0.=90” ,270°

_,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9. Backscattering cross-section for e2/el = 5.5, e3/el = 2.54, RI/AI = 0.7, Rz/RI = 0.02,00 == 45°, EOL = O, Eoy = 1 (dielectric inner sphere).
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Fig. 10. Forward scattering cross-section for EZ/eI = 5.5, e3/el = 2.54, RI/AI = 0.7, d/RI = 0.6, R2/R1 = 0.02. Eoz = O, E.v = 1

(dielectric inner sphere).

(depending on the parameters) with respect to PO, when qO The former observations are very useful for the detection of
is equal or differs by m rads from the angle between Olzl axis the small inhomogeneity, i.e. the determination of its position,
and i?o, and inversely a minimum or maximum value, when from the measurement of the scattered field. This position
PO differs by 7r/2 or 3m/2 rads from that angle. will be on the diameter of the external sphere lying in that
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Fig. 11. Backscattering cross-section for 62/61 = 5.5. 63/61 = 2.54,

(dielectric inner spher~).

direction of propagation of the incident field, which makes the

various scattering cross-sections largest or smallest. Moreover,

the extremum of ~b reveals not only the above diameter, but

also its radius where the ,inhomogeneity will lie. This radius

is in the opposite side from that of the direction of incidence.

The small inhomogeneity will lie also on that plane (or its

perpendicular one) defined by the d@ction of propagation of

the incident field and the vector EO, where ffb, fff and Qt

appear an extremum.

As it is evident by formulas (32), (33), (63), (64), and

(35)-(5 1), we can easily calculate the various scattering cross-

sections for each small value of R2 /R1, if the rest of the

known parameters remain constant, by simply using the results

given in Figs. 2–12, because 6C and 6Qt are analogous to p;,

i.e. analogous to (R2 /R1 )3. The same is valid for various

values of qe # O when q~ = O [qw # O when q. = O],

as it is seem by formulas (63)–(65) and (35)–(51 ). In this

case, 15Sn., 6T~n N q.[N ~i andfinW 60 and~Qt are
analogous to these quantities, so it is easy to calculate the

various scattering cross-sections for each different value of

~3/c2 [p3/p,2] (only of &3/~2 for Figs. 2–12 where p3 = K2)

if the rest known parameters of the problem remain constant.

For this purpose, the following values are necessary, which are

not marked on the corresponding figures: @ /A~ = 4,638782

(Figs. 5, 6, 9, and 11), a~/A~ = 195.2905 (Figs. 7 and

10) and Q;/A~ = 7.71444 (Fig. 12). Inversely, the above

remarks are useful for the calculation of the radius R2 or

of the constitutive parameters of the inner small sphere, i.e.

RI/AI = 0.7, R2/RI = 0.01, & = 45°, Eo. = Eoy = 1/4

for its identification, from the measurement of the scattered

field.

An indication about the range of validity of the assumption

referred above (7) and the error bounds of our approximation

p2 ~ O, can be given in the special case d = O by comparing

our results with the available exact ones for the problem of

two concentric spheres. The percent errors of our results, for

special values of the parameters, are given in Table I. From

this table, it is seen that, at least in this special case, these

errors are low enough even for values of p2 > 1, especially

for of and Qt and for a dielectric inner sphere. The maximum

value of p2 used in our figures for the parameters of Table

I and Rz/Rl = 0.02 is 0.140, keeping the percent error low

enough in each case. The technique of the present paper is

also applicable to complex scatterers other than sphere.

APPENDIX A

The expansion coefficients Smm(0), T~n(0), F~m(0),

G~. (0) ((3)–(6)) for the problem of the scattering of a plane

electromagnetic wave from an homogeneous dielectric sphere

of radius RI, with parameters E2, pz, kz, surrounded by an

homogeneous medium of infinite extent, with parameters El,

I.Ll, kl, are calculated easily by the satisfaction of the boundary

conditions at rl = R1 and have the following expressions

(m = -l, l,n > 1)

sm.(o) =
i#2 (Eo. — irmoy)gmn

fh [~lkJ(fll)j;(~3) – ~2}$i(~l)j~(~3)]
(Al)
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for e2/el = 5.5, e~fel = 2.54, R1/Al = 0.7, R2/Rl = 0.02, I& = 45°, EOZ = EOY = I/&

TABLE I
PERCENTERROR BETWEEN OUR RESULTSAND THE EXACT ONES FOR d = O

=1=
0.210 0.03
0.350 0.05

0.491 0.07

0.631 0.09

0.771 0.11

1.051 0.15

1.332 0.19

1.612 0.23

1.893 0.27

2.173 0.31
1

Metallic inner sphere

(E2/Sq=2.54, R1/A1=0.7)

,

-2.8x10-3 /Z.54X10-? 1 .17x10-
-8.37x10-3~ 3. 52x1 O-q 1.55x10-

0.147 ~0.196 { 0.082

1.37 \O.677 \ 0.256

6.37 11.54 \ 0.462

36.7 ~o.186 ] -1.46

-7.6 ;9.5 ] -7.78

-167.9 fzz .6 ~-16. I

-231.9 ~39 .1 ~26 .6

-241.9 ~60 .5 f-40 .0

Dielectric imer sphere

(E2/E1=2.5L, S3/E1=5.5, R1/A1=0.7

[ I
1 I

‘b 1 ‘f Qt
~

-7.6x10-4 \2.8x10-4 I 1.2x10-4

-7.26x10-3 ~3 .76x10-3\ 1.67x10-3
-0.0272 ~o.021 !9.3IX1O-3

-0.0525 ~0.0767

10.212-0.023 ,

0.926 [0.928

4.2 ~2.2

3.2 }2.8

-15 ~0.728

-37.5 /-4.1

0.0329

0,0881

0.347

0.65

0.265

-1.5

-4.3

T~.(0) =
irnh ~2P2 (E~~ — ~mEaY)gmn where P1, P3 and g,n,, are given in (25). In (Al) and (A2)

P1[~;#2~n (PI)jg(P3) – f&@:(Pl)jn(P3)l the Wronskian relation jn(pl)lt~ (PI) – j~(pl)h~(pI) = z/’pI

(A2) is used.

$’~n(0) = (E.z – imEoY)gm.

. fll.irL(01)j:(03) – #2j:(Pl)jn(P3) ~A3)

APPENDIX B

The symbols a(m, nl --~, sIP), a(n, S, p), etc., appearing in
#lhn(~l)j:(~3) – ~2h:(~l)~n(~3)

(13), (14), are calculated along steps described in the Appendix

Gmn(0) = m(EOx – imEOv)gnn
of [15], which will not be repeated here. There, are also found

certain special values of them, as well as of A& and B&I,
61jn(P1)j~(P3) – ~2j~(m).k(P3) (A4) necessary for the solution of the present problems. Some other
clhm(~l)j~(P3) – e2~&(pl)jI(~3) special values of these symbols useful in the present work and
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not appearing in [15], are related to the ones found there by

the following very simple equations:

a(+l, llm, nln–l)=a(m, nl+l, 117–1),

a(+l, llm, nln+l)=a(rn, nl+l, lln+l) (Bl)

a(o, llm, nln+l)=a(m,n lo, lln+l) (B2)

b(l, n,n+2)= b(n, l,n+2)=o (B3)

a(+l, Ilm, nln, n–l)b(l, n,n)

=(-l) n+ ’~na(rn, nl+l, lln, n-l) b(n, l,n) (B4)

a(O, llm, nln, n–l)b(l, n,n)

=(-l) m+l~na(m, nlO, lln, n-l) b(n, l,n) (B5)

(rn=-

where

Tn =

D;: = (–l)”T.B::l”,

> 1, u = –1, o, 1, n > 1) (B6)

2(2n + 1)
o/,,\. (B7)
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